首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   7篇
  国内免费   14篇
林业   2篇
农学   1篇
基础科学   3篇
  36篇
综合类   42篇
水产渔业   17篇
植物保护   7篇
  2024年   3篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   4篇
  2015年   8篇
  2014年   7篇
  2013年   14篇
  2012年   18篇
  2011年   15篇
  2010年   7篇
  2009年   7篇
  2008年   9篇
排序方式: 共有108条查询结果,搜索用时 281 毫秒
1.
微生物群落在水产养殖中起着重要作用,深入了解微生物群落组成及其构建机制对了解池塘生态功能具有重要意义。本研究采用高通量测序技术对南京地区斑点叉尾鮰(Ictalurus punctatus)养殖池塘水体中细菌群落结构特征进行了分析。结果显示,斑点叉尾鮰养殖池塘水体细菌群落结构呈现出明显的季节性变化,整个年度水体细菌群落呈现出连续的演替特征,冬季与春季、夏季与秋季的细菌群落结构较为相似。优势菌群主要为蓝藻门(Cyanobacteria)、放线菌门(Actinobacteria)、变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)。环境因子中,总溶解性悬浮物(TDS)、水温(Temp)、酸碱度(pH)、亚硝酸盐(NO_2~--N)和总有机碳(TOC)与斑点叉尾鮰养殖池塘水体细菌群落结构有显著相关(P0.05),对细菌群落结构的塑造影响也最大(r~20.6)。  相似文献   
2.
农田土壤氮素径流损失的影响因素及其防治措施研究   总被引:4,自引:1,他引:3  
根据当前国内外在农田土壤氮素运移转化机理方面已取得的研究成果,简要回顾了农田土壤氮素损失产生的环境污染危害,分析了影响土壤氮素径流损失的主要因素。在此基础上,提出了优化水肥管理、合理施用氮肥、发展生态农业、调整种植结构、推广缓控释肥料等防治举措。  相似文献   
3.
根据2012年9~12月的太湖鱼类资源调查,结合历年渔业捕捞数据及渔具渔法等资料,分析了太湖渔业的发展趋势及其资源的空间分布特征。结果表明,太湖鱼类捕捞产量总体上呈不断增长的趋势,但近年来湖鲚等小型鱼类的比重不断增加,渔业资源的小型化衰退趋势明显。网簖与高踏网的捕捞产量主要集中在开捕初期,并且不同湖区的渔获物产量及组成存在显著差异。太湖各湖区的鱼类资源密度依次为湖心区〉东部湖区〉北部湖区;不同食性鱼类的资源分布亦存在明显差异,其中浮游食性鱼类的资源密度在湖心区最高,草食性鱼类则在东部湖区最高,这与浮游生物、水生植物等生物饵料的分布格局密切相关。针对太湖捕捞渔业特征及存在问题,提出严格控制捕捞强度、合理调整开捕时间和强化大型经济鱼类的增殖放流等建议,以期为太湖渔业资源的合理调控和有序保护提供科学依据。  相似文献   
4.
为了探讨氮磷的不同供应比例和频度对藻类水华形成的影响,本研究设计了7种氮磷添加比例(质量比):只添加氮(以+N表示)、50:1、20:1、7:1,1:1、1:7和只添加磷(以+P表示);2种添加频度:频度较大的L系列(实验前期每日均进行添加),频度较小的S系列(只在实验过程中添加1次)。两种添加频度下,相同添加比例的处理的营养盐添加量相近。在处理+N、50:1、20:1、7:1和1:1中以N浓度为基准进行相应比例的P添加,在处理1:1、1:7和+P中以P浓度为基准进行相应比例的N添加。在1:1处理缸中N、P净增加均约为2.4mg·L-1。实验水体来自一个浮游植物丰富但没有微囊藻水华的天然富营养池塘。实验于2007年8月1日—8月13日在室外采用玻璃缸进行。结果表明,两种添加频度以及不同氮磷添加比例下,实验过程中出现的水华种类均为微囊藻(Microcysti sspp.)水华,没有固氮藻类水华出现。在两种不同添加频度下,微囊藻水华在处理+N、50:1、20:1、7:1和1:1中明显形成,而处理+P和1:7中,微囊藻水华的出现会晚几天或者水华现象不明显,这表明本实验中单独添加氮比单独添加磷对微囊藻水华形成的促进作用要明显些。水体中微囊藻水华的出现与适宜的氮磷比例添加有关,氮磷添加比例适宜时,两种不同的添加频度下均可出现微囊藻水华,但氮磷营养盐的不同添加比例和频度均没有导致固氮藻类水华的出现。  相似文献   
5.
长江倒灌鄱阳湖的时序变化特征及其影响因素   总被引:5,自引:0,他引:5  
长江中游通江湖泊江湖关系的核心是长江和湖泊之间的水量交换,而江水倒灌是江湖关系相互作用中强烈 的长江顶拖作用的一种最直接表现.本文以1960-2007年鄱阳湖湖口水文站的实测水文资料为基础,分析和探讨 了江水倒灌鄱阳湖的时序变化特征及其影响因素.研究结果表明:受差异性的湖泊流域和长江中上游来水的影响, 江水倒灌的发生主要集中在长江主汛期的7,8和9三个月,其中7月中下旬、8月底至9月中下旬是江水倒灌最为 频繁的时期;近50年来江水倒灌频率的年际变化总体呈长期的减小趋势,不同年代间呈现一多一少的相间分布格 局,反映出江湖作用强度在年代际尺度上存在一个此消彼长的波动过程.江水倒灌及其所反映的江湖关系相互作 用的演变过程,与长江流域气候波动背景下长江中上游来水和鄱阳湖流域来水量的差异密切相关.另一方面,不同 时期长江中下游过水能力的变化以及人类活动影响下鄱阳湖流域来水量和水位关系的改变也对江湖关系的演变产 生了一定影响.  相似文献   
6.
基于岳阳市通量观测塔2006年全年观测数据,应用FSAM模型,分析不同大气稳定度下该观测点通量信息的源区分布。结果表明:主风方向上(0°~90°),通量源区(P=0.9)迎风向(X向)上的分布范围在稳定大气条件下为110~3500m,而在非稳定大气条件下为90~1800m;3个非主风方向上(90°~180°,180°~270°和270°~360°)通量源区(P=0.9)迎风向(X向)上的分布范围在稳定大气条件下以180°~270°最大,为110~4500m,而在非稳定大气条件下3者相当,为90~1800m;主风方向上,相同大气条件下,生长季的通量源区略大于非生长季的通量源区,且生长季和非生长季的通量源区在不稳定大气条件下都比稳定大气条件下小;通量观测结果能代表仪器所在地的下垫面特征。  相似文献   
7.
根据派河支流光明大堰河流域范围内产生的农村生活污水NH_3-N、COD含量超标的特点,以湿地技术为核心,设计了BA-MBR+复合人工湿地组合处理技术模型。模型经过调试运行,随着挂膜逐渐成熟后,对系统进出水质进行监测与分析。结果显示该系统对SS、COD_(Cr)、TN、NH_3-N、TP平均去除率分别达90%、55%、42%、75%、30%。该工艺采用多级曝气,增加溶解氧含量,对氨氮去除效果明显,提高脱氮效率。整套系统内部形成"好氧-厌氧"的环境,有效削减污染物含量,脱氮除磷效果较好。该工艺适用于处理农村生活污水,且工艺采用湿地净化技术,运行成本低,村镇融合效果好,环境、生态效益好,易于在农村地区推广。  相似文献   
8.
不同降雨强度对营养盐垂向迁移过程和淋失量的影响   总被引:5,自引:0,他引:5  
云南抚仙湖流域农田面源污染日益严重,土壤污染物主要随地表径流进入湖泊,使湖泊受到污染。但目前的现场观测表明,农田区浅层地下水也已受到污染,地下水已成为污染物输移的路径之一。通过四组不同降雨强度作用下的室内土柱试验模拟土壤污染物向地下水的淋失迁移量,对降雨入渗过程中总氮、总磷、铵态氮和硝态氮的垂向迁移过程进行了分析,通过分时段处理来对各组实验中营养盐累积淋失量进行了计算。结果表明,硝态氮的垂向迁移能力和出流浓度均大于铵态氮,总氮和总磷的累积淋失量与累积降雨量呈自然对数关系;降雨强度对总氮的淋失作用明显,对总磷淋失量的影响则相对较弱。实验结果有助于揭示抚仙湖流域降雨作用下农田土壤中污染物的垂向迁移过程及其对农田浅层地下水的污染机制,并为污染物垂向迁移的数学模拟提供数据基础。  相似文献   
9.
田间土壤剖面中阿特拉津的迁移试验   总被引:1,自引:0,他引:1  
为了评价阿特拉津的污染风险,采用原位试验法研究了土壤剖面中阿特拉津、Br-与水分耦合迁移特征.结果表明,施用阿特拉津24 h后,模拟降雨1 h,降雨量为40 mm的处理(Ⅰ)和80 mm的处理(Ⅱ)的土壤含水率随土层深度增加先减小后增加;而施用阿特拉津前模拟降雨1 h,降雨量为10mm,施用24 h后,模拟降雨1 h,降雨量为40 mm的处理(Ⅲ)和80 mm的处理(Ⅳ)的则呈"S"形变化.Br-与阿特拉津在0~10 cm土层的残留浓度最大,分别为1.40、1.09、0.62、0.52 mol/kg和0.82、0.74、0.54、0.29 靏/g.处理Ⅰ、Ⅱ的各土层中Br-与阿特拉津的变异较小.土壤溶液中阿特拉津的浓度随土层深度的增加而降低,表层(20 cm)土壤溶液中阿特拉津残留浓度为:处理Ⅰ>处理Ⅲ>处理Ⅱ>处理Ⅳ.  相似文献   
10.
针对污染河水黑臭缺氧、NH4^+—N含量高等问题,研发了一种“漂浮载体悬挂弹性生物膜填料+水生植物并辅以人工微曝气系统”的微曝气生态浮床系统,以漂浮植物水芹为例研究了系统中水芹对N、P的吸收特性和去除作用。结果表明,随着水芹的生长其生物量干重显著增加,生长80d左右时总生物干重在2497.2—3144.4g·m^-2之之间,上、下部生物量比平均为13.4。不同部位水芹N、P的含量不同,总的趋势为含N量叶〉根〉茎,含P量茎〉根〉叶。不同生长时间水芹N、P含量及其吸收速率不同:随着水芹的生长,组织内N、P含量逐渐降低,N的吸收速率总趋势为60-80d〉35-60d〉1-35d,P的吸收速率总趋势为35-60d〉1-35d〉60-80d。而随着水芹的生长吸收N、P的总量却在逐渐增加,吸收N的总量从17.69g·m^-2增加到61.66g·m^-2,吸收P的总量从4.99g·m^-2增加到13.55g·m^-2,这主要取决于自身的生物量和N、P的含量。水芹对N、P的积累主要集中在上部,分别占N、P吸收总量的92.2%-93.4%、92.5%~93.1%。水芹生长35、60、80d时,吸收N量占系统TN去除量的比率分别为4.50%、6.06%和6.87%,水芹对P的吸收量分别占系统去除P总量的18.53%、26.82%、22.00%。水芹对N、P的吸收仅是微曝气生态浮床净化系统去除N、P的一个途径,但水芹根际微生物的作用不可忽视。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号